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I. Introduction: There are a number of different suggested standards
for exposure to impulse/impact noise, e.g. Coles, et al. (1968), OSHA, (1974),
Smoorenburg (1982), and Pfander et al., (1980). Although each of these
criteria has its proponents, none of them are in complete agreement with the
existing data (Smoorenburg, 1990). Unfortunately, there is an extremely
limited empirical data base upon which a new standard can be built. What is
needed is a new criterion based upon a cohesive, systematically acquired body
of experimental data. The need for such a data base has been emphasized by
e.g., von Gierke (1978, 1983); Ward (1983); and the NATO Study Group RSG.6
(1987) and most recently by the NRC-CHABA Working Group (1992). 1In
particular, two areas of the existing data base that have been singled out as
being deficient in data are those relating to the effects of high level
reverberant impulse noise exposure, and the effects of the impulse energy
spectrum. While data on spectral effects have recently begun to accumulate,
[see e.g., Price 1979, 1983, 1986; Patterson et al., 1986, 1990; Patterson and
Hamernik, 1990; and Hamernik et al., 1990] there is virtually no information
available on reverberant blast wave exposure. The difficulties asscciated
with generating such a data base are compounded by the extremely broad range
of high intensity noise transients that exist in various industrial and
military environments. For example, in industry reverberant impacts with
variable peak intensities, usually under approximately 140 dB, often occur.

At the other extreme, the diversity of military weapon systems produce
impulses which originate as the result of a process of shock wave formation
and propagation following an explosive release of energy. These waves, which
can have peak levels well in excess of 180 dB, can be either reverberant or
non-reverberant in nature depending upon the environment in which they are
encountered. Trying to develop a single standard to cover this broad range of
"acoustic" signals is a formidable task.

Several laboratory and epidemiologic studies indicate the potential
severity and complexity of the problem. For example, Hynson et al., (1976)
showed that a free field impulse which is followed by reflected components can
contribute disproportionately to the eventual permanent threshold shift (PTS)
and cochlear sensory cell loss. This study, however, was based upon a small
number of animals (2 groups with 5 animals/group) and has not been replicated.
More recently Roberto et al., (1989) reported on the anatomical changes in

pigs and sheep exposed to high level reverberant blast waves within an armored




vehicle. Although no measurements of hearing were made, the lesions in the
cochlea and middle ear were extensive and probably the result of direct blast
wave-induced, mechanical damage to the cochlea (Luz and Hodge, 1971). The
levels, while extremely high (approximately 195 dB), were typical for the type
of projectile impact and nature of the armored vehicle. Although not a
hearing study, Clemedson and Jonsson (1976) indicate that exposures to
reverberant blast waves are more hazardous to the respiratory system than are
exposures to the same type of stimulus in a non-reverberant system. Since the
total energy of the exposure is increased and under certain circumstances peak
levels are also increased, this result, showing an exacerbation of effect in a
reverberant system is not surprising and will most likely also be true for
hearing trauma. Demographic data such as that of Walden et al., (1971, 1975)
can be interpreted as indicative of an increased risk of hearing loss when
personnel are exposed to high noise levels in acoustically hard (reverberant)
environments. Additional, but much more circumstantial evidence emphasizing
the potential for trauma from reverberant impulses can be found in clinical
reports, such as Salmivalli (1967) or Smyth (1974). These reports document
the severe hearing loss following acute acoustic trauma from a variety of
military and non-military sources. While there is little or no documentation
of the acoustic signal, one can assume, with some confidence, from the
circumstances of the trauma, that the signal was reverberant.

The energy spectrum of an impulse is also widely acknowledged to be
important in risk assessment, although relatively little experimental data is
available that can be used to understand the role of spectrum in the
production of hearing loss. In fact, one of the surprising features of the
existing or proposed impulse noise exposure criteria is the general lack of
specific consideration that is given to the frequency domain representation of
the impulse, a point frequently raised by Price (1979) and others. Some
deference is, however, given to the spectrum in these criteria, but in a
covert or indirect manner (e.g., through the use of A-weighting of the
stimulus or through the handling of the A and B duration variables). A more
direct spectral approach to the evaluation of impulses and impacts was
proposed by Kryter (1970). His suggestions, while based upon sound reasoning,
never really caught on. The Kryter approach appeared attractive in its
ability to predict the amount of temporary threshold shift measured two

minutes after exposure (TTS;) to a noise transient, provided that the TTS, was



not very large or alternatively that the levels of the transient in any given
frequency band were not excessive. Price (1979, 1983, 1986), to some extent
has tried to build upon and extend the Kryter approach by considering the
spectral transmission characteristics of the peripheral auditory system.
Price's reasoning led to the following conclusions: (1) There is a species
specific frequency, fo, at which the cochlea is most vulnerable and that
impulses whose spectrum peaks at f5 will be most damaging. This would appear
to be true, according to Price, regardless of the distribution of energy above
and below fo. For humans the suggested frequency is 3.0 kHz. (2) Relative to
the threshold for damage at fo, the threshold for damage should rise at 6
dB/octave for fp<fo and at 18 dB/octave for fp>fo, where fp = spectral peak of
the impulse. In subsequent studies Price (1983, 1986) tried to relate, with
varying degrees of success, experimental data obtained from the cat to the
predictions of his model. The data reported by Price are limited, and suffer
from a large variability which because of the small number of subjects in the
various exposure groups makes general conclusions very tentative. While his
data do reinforce his predictions concerning the effect of spectral
characteristics, there are a number of issues related to the presentation of
threshold data and the limited histological data that limit their use in the
quantitative development of exposure standards. More recently, Hamernik et
al. (1990), Patterson and Hamernik (1990) and Patterson et al. (1993) have
reported on an extensive series of parametric studies in which the spectra of
non-reverberant impulses were varied. A review of the literature indicates
that, except for the studies mentioned above, there are few, if any, other
published results obtained from experiments specifically designed to study the
effects of the spectrum of an impulse on hearing trauma.

The Patterson and Hamernik, (1990), Hamernik et al. (1990) and Patterson
et al. (1993) reports on the results of exposures to several types of impulse
noise and blast waves represent one of the most extensive compilations of data
on spectral effects. These studies have shown that it is possible to bring
order to relations among permanent threshold shifts produced by exposure to
impulsive noise and the spectrally weighted energy of the exposure. What was
encouraging about these data was that an empirical weighting function obtained
using impulses that were generated by conventional electro-acoustic methods
could be used to unify the results obtained using high-level shock tube

generated blast waves. These results were also in general qualitative
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agreement with the predictions of Price. This interim report documents the
results of exposures to reverberant impulses having peak SPLs in the range 150
to 160 dB.

II. Methods: The basic experimental protocol that is common to all
of the experiments reported here, consists of the following steps: (1)
Preexposure tympanograms and audiograms are measured on each animal. (2) The
animals are exposed to noise under well-controlled conditions. The temporal
and spectral characteristics of the noise are recorded. (3) The animal's
evoked response thresholds and tympanograms are again measured immediately
after exposure and thresholds are measured at regular intervals after
exposure. At 30 days postexposure, the audiogram is again measured to
establish the animal's permanent threshold shift. (4) The animals are
euthanatized and their cochleas are then prepared for microscopic analysis.
Cochleograms, which provide a quantitative description of the extent and
location of the hair cell lesions, are prepared for each cochlea. Additional
experimental details can be found in previous contractor reports (Hamernik et
al., ADA 203-854, ADA 206-180 and ADA 221-731).

(a) Subjects: The chinchilla was used as the experimental animal. Over
the years, the chinchilla has been used in a wide variety of auditory
experiments and consequently, much is known about its threshold (Miller, 1970;
Henderson et al., 1983), psychophysical tuning curves (McGee et al., 1976;
Salvi et al., 1982a), threshold for gap detection (Girsadi et al., 1980) and
amplitude modulated noise (Salvi et al., 1982b). These psychophysical results
indicate that the chinchilla's hearing capabilities are quite similar to those
of man. The chinchilla is perhaps the most common animal used in noise trauma
research even though there is a general consensus that the species is more
susceptible to noise trauma than is man (Trahiotis, 1976). However,
phenomenologically the chinchilla is considered to be a suitable model for
man. Thus, the chinchilla was chosen as a reasonable animal model for the
blast wave studies reported in this document.

To date, one hundred and thirty-six (136) chinchillas have completed the
experimental protocol. Each animal was anesthetized [IM injection of
Telazol® (40 mg/kg], and made monaural by the surgical destruction of the
left cochlea. The monauralization allows for the testing of hearing function
in a single ear. During this surgical procedure, a chronic electrode was

implanted near the inferior colliculus for single-ended, near-field recording
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of the evoked potential (Henderson et al., 1973; Salvi et al., 1982a). The
animals were allowed to recover for at least a week before evoked potential
testing began.

(b) Preexposure testing: Hearing thresholds were estimated on each
animal using the auditory evoked potential (AEP). The AEP has been shown to
be a valid index of hearing threshold in the chinchilla. The correlation
between the behavioral and evoked response measures has been strengthened by
directly comparing, in the same animal, estimates of noise-induced behavioral
and evoked potential threshold shifts (Henderson et al., 1983; Davis and
Ferraro, 1984). There is a close correlation between the behavioral and
evoked potential thresholds before, during, and after acoustic
overstimulation. In other words, the AEP threshold estimation procedure
provides a good estimate of the magnitude of noise-induced hearing loss. The
animals were awake during AEP testing and restrained in a yoke-like apparatus
to maintain the animal's head in a constant position within the calibrated
sound field. AEP's were collected to 20 msec tone bursts (5 msec rise/fall
time) presented at a rate of 10 per second. A general-purpose computer
(Digital Equipment Corporation MicroPDP-11/73) with 12-bit A/D converter (Data
Translation 3362), timer (ADAC 1601) and digital interface (ADAC 1632) was
used to acquire the evoked potential data and control the frequency, intensity
and timing of the stimulus via a programmable oscillator (Wavetek 5100),
programmable attenuator (Spectrum Scientific MAT) and electronic switch
(Coulbourn Instruments S84-04). The electrical signal from the implanted
electrode was amplified (50,000x) and filtered (30 Hz to 3000 Hz) by a Grass
P511J biological amplifier and led to the input of the A/D converter where it
was sampled at 20 kHz (50 msec period) over 500 points to obtain a 25 msec
sampling window. Each sampled waveform was analyzed for large amplitude
artifacts and, if present, the sample was rejected from the average and
another sample taken. Averaged AEP's were obtained from 250 presentations of
the 20 msec signal. Each waveform was stored on disk for later analysis. A
schematic of the AEP laboratory and the main laboratory computer system with
which the AEP system interacts is shown in Figures 1 and 2.

Thresholds were measured using an intensity series of test tones having 5
dB steps at octave intervals from 0.5 to 16.0 kHz and at the half-octave
frequency of 11.2 kHz. Threshold was determined to be one half step size (2.5

dB) below the lowest intensity that showed a "response" consistent with the



responses seen at higher intensities. The average of at least three separate
threshold determinations at each frequency obtained on different days was used
to obtain the preexposure audiogram.

(c) Middle ear function: In order to be certain that the blast waves
have not altered middle ear function and thus indirectly contributed to
threshold changes or to a protective effect for subsequent impulses,
tympanometric functions were measured just prior to exposure and immediately
following exposure. A Grason-Stadler 1723 Middle Ear Analyser was used to
obtain tympanograms at 220 and 660 Hz. The tympanogram indicates
perforations, disarticulations, severe edema, etc. The specific methodology
and some experimental details can be found in Eames, et al. (1973).

(d) Blast wave generation, measurement and analysis: Shock waves were
generated by a 3-inch diameter (Lamont) shock tube utilizing a quick acting
valve to initiate the pressure distrubances. This source (hereafter refered
to as source III) is described in greater detail in the following contractor
reports: Hamernik et al., ADA 203-854; 206-180 and 221-731.

A cross-sectional view of the "Lamont" driver is shown in Figure 3. The
3-inch Lamont shock tube source is shown schematically in Figure 4. The
Lamont source uses a relatively simple rapid acting valve to quickly establish
a2 high pressure discontinuity in the expansion section in order to "drive" the
shock front. A force differential generated over the area of the low pressure
chamber relative to the high pressure chamber, on the rear plate, maintains
the seal of the high pressure chamber. As the low pressure is gradually
reduced, a point is reached where the net force acting on the valve reverses
direction and the valve rapidly thrusts forward releasing the "slug" of high
pressure gas into the expansion section. N2 was used as the operating gas.
The pressure in the high pressure chamber was varied from approximately 100
psig to 1000 psig to achieve peak sound pressure levels of the blast wave of
from 150 dB to in excess of 160 dB at the exposure location. The peak SPL of
the blast wave was controlled by systematically adjusting the pressure in the
compression section. The pressure-time history of the blast wave was recorded
using a transducer located on the center line of the outlet of the shock tube
at the location of the test animal.

In order to produce reverberant conditions, a hard-walled three-foot
"spherical" reverberant chamber was built. The reverberant chamber was built

in the approximate shape of a dodecahedron from joined segments of 1/4 inch



thick aiuminum plate. The reverberant chamber was constructed in a manner
that allows the rear one~third of the chamber to be opened. The chamber was
fitted with a mounting platform that allows the awake and restrained animal to
be fixed with its head in the geometric center of the chamber with the
experimental ear facing the source (i.e., normal incidence). The center of
the free standing reverberant chamber (i.e., not connected to the shock tube)
was positioned 29 to 48 inches from the shock tube exit depending upon the
desired peak SPL and approximately 30° off the center line of the tube as
shown schematically in Figure 4. An instrumentation port on the side of the
chamber allowed calibration to be performed as described in the next section.
(e) Calibration of the chamber: The computer system used in the
calibration was a Compag 286 Deskpro personal computer using the ASYST ™
application package (ASYST“‘Software Technologies, Inc., Rochester, NY). A
schematic of our current instrumentation set up is shown in Figure 5. The
blast wave was first digitized and then recorded in storage devices (e.g.,
hard disk or magnetic tape). By using the customized software developed in
our laboratory, each digitized blast wave was analyzed to extract information
such as the total "acoustic energy" (time integrated pressure squared), energy
spectrum, peak and root-mean-square (RMS) sound pressure level (SPL), etc.
Two different types of transducers were used to convert the dynamic
acoustic pressure into an electrical signal. The B&K 1/8 inch microphone
(Type 4138) and the PCB crystal microphone (Model 112A22) were selected
because of their ability to record high peak levels and their relatively fast
rise times. A B&K microphone preamplifier (Type 2639), a B&K measuring
amplifier (Type 2606), and a PCB six-channel amplifying power unit (Model
483A08) were used to amplify the analog signals from the B&K and PCB
microphones respectively. Both transducers yielded identical results. Since
the PCB transducers are more rugged and much less expensive, they were used
for routine calibration. Performance and calibration of the PCB's, however,
was regularly checked with the B&K measurement system. The B&K system was
calibrated using a B & K pistonphone and a high pressure calibrator (Model
4221) . The amplified analog signals were monitored on an oscilloscope. The
output signal from the transducer was amplified and, in order to avoid
aliasing problems that can occur in analog-to-digital (A/D) conversion, the
amplified signals were filtered using an anti-aliasing filter prior to

digitizing. The sampling rate of the A/D converter (12-bit) was set at 500



kHz and the cut off frequency of the ar“-i-aliasing filter was set at 150 kHz
(approximately 1/3 of the sampling rate). For each blast wave, 16,384 samples
were recorded for later analysis. Software was written using this PC-based
system to perform the following tasks: total sound exposure and exposure level
calculations (Young, 1970), energy flux calculations, and spectral analysis
using a 4096-point FFT, A-weighted analysis, etc. Thus, for each impact the
total sound exposure or exposure level could be calculated (i.e., the time
integrated, squared sound pressure). During each exposure a PCB microphone
was mounted near the external canal of each experimental animal during
exposure to document each stimulus presentation.

(f) Exposure of animals: For a given exposure condition (Table I), each
chinchilla was exposed at the same calibrated location of the reverberant
chamber. During exposure the animal was unanesthetized but immobilized in a
leather harness (Patterson et al., 1986). The right pinna was folded back and
fixed in place to insure that the entrance of the external meatus was not
obstructed and the position of the entire animal was adjusted so that the
cross sectional plane of the external meatus was oriented parallel to the
advancing shock front (i.e., a normal incidence). Each experimental group
consisted of fifteen (15) animals. Each animal was individually exposed to
one of the following exposure conditions: 150, 155 or 160 dB peak SPL; 1, 10,
or 100 impulses presented at the rate of 1l/min. This combination of one
source, three intensities and three numbers yielded a total of 136 animals
distributed in 9 groups to complete the experimental protocol for the three-
inch Lamont blast wave source. The interstimulus internal (ISI) was fixed at
the rate of 1/min for two reasons, (1) our previous results indicate that
exposure paradigms with ISI's in the range 10/min through 1/10min do not in
general produce systematic statistically significant different results, and
(2) to attempt to minimize the number of animals and time expenditure by
focusing first on the most important variables of peak level and number. An
ISI of 1/m was chosen because it represents a reasonable approximation to many
situations encountered in practice.

(g) Postexposure testing: After the exposure was completed, threshcld
recovery functions were measured at 0.5, 2.0 and 8.0 kHz at 0, 2, 8, 24 and
240 hours after removal from the noise (using the same method as described for
preexposure testing). After at least 30 days, final audiograms were

constructed using the average of three separate threshold determinations at



each of the seven preexposure frequencies. Permanent threshold shift was
defined as the difference between the postexposure and preexposure thresholds
at each individual test frequency.

(h) Cochlear histology: Following postexposure audiometric testing, the
animals were euthanatized by decapitation and the cochleas were immediately
removed and fixed. The cochleas were dissected and the status of the sensory
cell population was evaluated using conventional surface preparation histology
(Engstrom et al., 1966). Briefly, the stapes was removed and the round window
membrane opened to allow transcochlear perfusion, via the scala tympani/scala
vestibuli with cold 2.5% glutaraldehyde in veronal acetate buffer at 7.3 pH
(605 mOsm). Postfixation was performed on the following day with one percent
osmium tetroxide in veronal acetate buffer (pH 7.3) for 30 minutes. The
cochleas were then dissected and the entire sensory epithelium along with the
lateral wall structures were mounted in glycerin on glass slides. The status
of sensory and supporting cells were evaluated with Nomarski Differential
Interference Contrast microscopy and entered into a data base on a laboratory
computer (Digital Equipment Corporation MicroPDP-11/73 and Macintosh II).
Standard cochleograms were then constructed by computing the percent sensory
cell loss across the length of the cochlea in 0.24 mm steps. These cell loss
figures were then converted into percent loss over octave bands centered at
the audiometric test frequencies along the length of the cochlea and
correlated with the frequency-place map constructed by Eldredge et al.,
(1981). A schematic of the morphometric system is shown in Figure 6.
Quantitative histology of the cochlea, relating sensory cell populations to
frequency specific locations on the basilar membrane, is considered as a
necessary adjunct to audiometric measures when developing exposure standards.
At the very least, histology provides an alternate measure of pathology which
should correlate with functional measure.:. However, threshold measures
represent only a single dimension of hearing. While traditionally considered
to be the most basic measure, thresholds do not always reflect the extent of
pathology (See e.g., Eldredge et al., 1973 or Hamernik et al., 1989).

(i) Statistical analysis: The descriptive analysis of the data from
these experiments consisted of: (1) a complete description of raw data and
group means and standard deviations; (2) a graphical representation of mean
recovery curves; (3) tabular and graphical representation of individual

histological summaries; and (4) group summaries of the histological analysis.



Further examination of the data employed mixed model analyses of variance with
repeated measures on one factor (frequency) using the SPSS Release 4.0
statistical package. Unless otherswise noted, the probability of a Type I
error was set at 0.05. An example of a complete data archive for a single
experimental group is presented in the Appendix.

(j) Data archive: For each experimental animal and each experimental
group, a complete data archive is maintained in the format shown in the
Appendix for the 155 dB peak SPL; 1lx exposure condition. From an appendix of
this type all audiometric and histological data for each animal can be
retrieved for future analysis. A complete archive of individual animal and
group mean data will be submitted to the COR at the termination of this
contract.

III. Results:
(a) The stimulus: Figure 7 illustrates each of the three impulses

generated by source III that were used for the exposures described in this
report, along with each of their frequency spectra. In the reverberant
enclosure, peak pressure fluctuations over 120 dB persist for up to
approximately 90 ms. Unweighted octave band energy values for each of the
impulses are shown graphically in Figure 8. Energy values were computed from

an expression of the form;
T
2
[ e2wae o
o pC

where pC = 406 mks rayls. For each exposure, various weighted and
unweighted energies; energy levels, and octave band values for each exposure
are presented in Table I. ([Note: P-weighted energies were obtained using the
weighting funciton presented by Patterson et al., 1993.]

(b) Breexposure thresholds: The preexposure threshold means and standard
deviations for each of the nine exposure groups are presented in Table III.
The preexposure thresholds were analyzed for differences using a two-way mixed
model analysis of variance with repeated measures on one factor (frequency).
The analysis revealed a statistically significant main effect of frequency (F
= 325.21, df = 6/750, p < .05) which was expected based upon our knowledge of
the chinchilla audiogram (Fay, 1988). The main effect of experimental group
was not statistically significant (F = 0.88, df = 8/125) nor was the
interaction of group and frequency (F = 1.36, df = 48/750). Therefore, the
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nine groups in this study did not significantly differ in mean thresholds for
the audiometric frequencies tested before noise exposure,

The thresholds measured using the AEP are typically better than the
behavioral thresholds published by Miller (1370) when a correction for the
effects of temporal integration is applied (Hendere~n, 1969). The better
thresholds probably reflect improvements in the methods currently used to
obtain AEP thresholds.

(c) Postexposure thresholds: The group mean recovery of threshold over a
30-day period following each of the exposures is shown in Figure 9, 10 and 11.
The following generalizations can be extracted from these figures: (1)
Exposure to a single impulse between 150 and 160 dB peak SPL produces
relatively little (< 25 dB) threshold shift (TS) immediately following
exposure and thresholds at each of the three test frequencies recovered to
normal within roughly 10 days following exposure. (2) As the number of
impulse presentations increased to 10 and 100, there were large and systematic
increases in TS. For the 10x exposure, TSs varied from around 40 dB to almost
70 dB. Although a ten-fold increase in the number of impulses produced large
changes in TS, a 10 dB increase in the peak level produced relatively small
{~ 10 dB) changes in the initial TS (TSgp). However, increasing the number of
presentations to 100 impulses caused only about a 10 dB increase in TSy above
the 10x condition, and when the peak level was increased from 150 dB to 160 dB
for the 100x condition, there was little or no change in TS;. (3) As both
number of impulses increased and peak levels increased, there was a clear
delay in the TS recovery process. TSs would recover very little, if at all,
during the first 5 to 1l0-days postexposure. Such delayed recovery has been
shown to correlate with a noise induced pathology (Hamernik et al., 1988).

The above generalizations were true for all three test frequencies that were
followed over the 30-day recovery period.

(d) Noise-induced permanent threshold shift: Figures 12 and 13
illustrate the group mean PTS for all groups exposed to reverberant blast
waves from source III. Figure 12 shows the effect of number (N) of
reverberant impacts at each of the three levels, while Figure 13 shows the
effect of the peak SPL of the impacts at each of the three Ns. Two-way mixed
model analyses of variance with repeated measures on one factor (frequency)
were performed on the PTS measures depicted in each panel of these two

figures. The analyses comparing number of impulses within each peak SPL level
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of impulse (Figure 12) showed statistically significant main effects of number
of impulses and frequency for all three analyses as well as statistically
significant interactions between number and frequency. These results are
clearly evident from an inspection of the mean data shown in Figure 12, i.e.,
there is a systematic increase of PTS across most audiometric test frequencies
as the number of impulse presentations is increased. The statistically
significant interaction suggests that the magnitude of the main effect of
number of impulses is dependent on the frequency at which PTS is measured.
This effect is most clearly seen in the 150 dB data panel at the higher test
frequencies.

Another three analyses of variance were used to evaluate the effect of
impulse level on groups of animals exposed to the same number of reverberant
impulses (Figure 13). For the groups exposed to a single impulse, little PTS
was observed and the analyses revealed that neither main effect was
statistically significant. The main effect of peak was statistically
significant for the groups exposed to 10 impulses (F = 6.48, df = 2/41, p <
.05). The main effect of peak was not statistically significant for the
groups exposed to 100 impulses (F = 2.05, df = 2/43), but the interaction of
peak and frequency was statistically significant (F = 4.21, df = 12/258, p <
.05). As with the data presented in Figure 12, the results of this
statistical analysis can be clearly seen in the mean data presented in Figure
13.

(e) Histological results: To date, hair cell population data has been
collected only from the three groups exposed to the 155 dB peak SPL impulses.
The group mean percent inner and outer hair cell losses computed over octave
band lengths of the cochlea are shown in Figure 14, As with the audiometric
data, the histological results are systematic in showing a clear increase in
the severity of noise-induced damage as the energy of the exposure increases.
For the single presentation of the 155 dB impulse, there is generally no
sensory cell loss. Increasing the number of presentations to 10, causes
severe sensory cell loss in the 1.0 and 2.0 kHz octave band regions of the
cochlea; a lesion generally in accord with the 1-2 kHz spectral peak in the
distribution of energy of the impulse. A further increase in presentations to
100, causes an increment in damage at the 1-2 kHz region, but more

significantly a substantial spread of damage to more apical and basal regions.
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Table I

Definition of Experimental Groups

Group N Peak SPL Number of Impulses
1 15 150 1
2 15 150 10
3 15 150 100
4 15t 155 1
5 15 155 10
6 15 155 100
7 15 160 1
8 162 160 10
9 15 160 100

Postexposure threshold and PTS at 11.2 kHz test frequency missing in
one subject (# 1402) due to operator error.

Audiometric data missing in one subject (# 1571) due to loose AEP
electrode.



Table II
Unweighted and weighted octave band energies for a

sinyle reverberant impulse generated by Source III

150 dB peak SPL

Octave Band Unweighted A-energy P-energy Unweighted* A-energy* P-energy*

CF (kHz) (J/m2) (J/m2) (J/m?) (dB) (dB) (dB)

< 0.125 0.0137 0.0000 -18.6 -51.4

0.125 0.0065 0.0002 -21.9 -38.0
0.250 0.0023 0.0003 0.0000 -26.4 -35.0 -43.4
0.500 0.0113 0.0054 0.0007 -19.5 -22.7 -31.5
1.000 0.2329 0.2329 0.2329 -6.3 -6.3 -6.3
2.000 0.1548 0.2041 0.1548 -8.1 -6.9 -8.1
4.000 0.0707 0.0891 0.4463 -11.5 -10.5 -3.5
8.000 0.0392 0.0304 0.0392 -14.1 -15.2 -14.1

> 8.000 0.0205 0.0024 -16.9 -26.2

155 dB peak SPL

Octave Band Unweighted A-energy P-energy Unweighted* A-energy* P-energy*

CF (kHz) (J/m2) *J/m?) (J/m?) (dB) (dB) (dB)

< 0.125 0.0677 0.0000 -11.7 -44.5

0.125 0.0080 0.0002 -21.0 -37.1
0.250 0.0067 0.0009 0.0001 -21.8 -30.4 -38.8
0.500 0.0371 0.0177 0.0023 -14.3 -17.5 -26.3
1.000 0.8382 0.8382 0.8382 -0.8 -0.8 -0.8
2.000 0.4631 0.6105 0.4631 -3.3 ~2 1 -3.3
4.000 0.2128 0.2679 1.3427 -6.7 -5.7 13
8.000 0.0824 0.0639 0.0824 -10.8 -11.9 -10.8

> 8.000 0.0246 0.0029 -16.1 -25.4

160 dB peak SPL

Octave Band Unweighted A-energy P-energy Unweighted* A-energy* P-energy*

CF (kHz) (J/m2) (J/m?) (J/m?) (dB) (dB) (dB)

< 0.125 3.0790 0.0016 4.9 -27.9

0.125 0.1551 0.0038 -8.1 -24.2
0.250 0.0535 0.0074 0.0011 =1217 -21.3 -29.7
0.500 0.5723 0.2739 0.0361 ~2.4 -5.6 -14.4
1.000 4.6410 4.6410 4.6410 6.7 6.7 6.7
2.000 2.6100 3.4407 2.6100 4.2 5.4 4.2
4.000 0.6592 0.8299 4.1593 -1.8 -0.8 6.2
8.000 0.3952 0.3068 0.3952 -4.0 gl -4.0

> 8.000 0.1533 0.0180 -8.1 -17.4

* dB re 1 J/m?



Table III

Preexposure Threshold Means (dB) and Standard Deviations (dB) for all Groups

Peak SPL * 0.5
150 dB 1 17.9
5.6
150 dB 10 14.6
4.7

150 dB 100 15.9

155 dB 1 18.5

155 dB 10 16.2

155 dB 100 15.5

160 dB 1 18.5

160 dB 10 16.8

160 4B 100 16.9

5.4

Total 16.8
5.5

135

Miller (1970) 5.1
6.1

36

Miller (1970) 16.2
corrected for
temporal integration
(Henderson, 1969)
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Schematic representation of auditory evoked potential
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Hardware Schematic Video
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Figure 5. Configuration of the MS-DOS PC-Based Data Acquistion

and Analysis System
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Figure 10. Recovery of threshold shift for all groups exposed to
one, 10 or 100 reverberant blast waves at 155 dB peak SPL
produced by Source III. The error bars represent one standard
error of the mean.
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produced by Source III. The error bars represent one standard
error of the mean.
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represent one standard error of the mean.
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Appendix

Example Data Archive



Guide to the Data Archive

The raw data and summary statistics for each experimental group are
included in a data archive. The following pages give an example how the
information from one group is arranged in the archive and present a brief
description of the contents of the data archive. In the midterm report
only an example archive of a single exposure group is included. The entire
data archive will be printed in this format and submitted to the COR at the
termination of this contract.

Page Description
A-1 Group Title Page

The group title page indicates the exposure that each animal in this
group received [e.g., 150 dB peak SPL, 1X (single impulse)] and the
subjects that comprise this group. Other notes may be indicated.

A-2 Figures

The upper left panel depicts the mean preexposure thresholds for this
group. The error bars on this figure and all other figures in the
appendices represent one standard error of the mean. If a bar is not
present, the standard error was less than the size of the symbol.

The lower left panel presents the group mean PTS measured at least 30
days after exposure.

The upper right panel displays the group mean threshold shift
measured immediately after exposure and at intervals of 2, 8, 24, 240
and 720 hours after exposure at the three test frequencies (0.5, 2.0,
8.0 kHz). (The 720-hour measurement consists of the average of three
different measurements made at least 30 days after exposure.)

The lower right panel presents the mean percent inner and outer hair
cell losses in lengths along the basilar membrane that correspond to
an octave band.

A-3 to A-4 Preexposure, Postexposure and PTS Measurements

This page tabulates the pre- and postexposure thresholds (in dB SPL)
for each subject as well as the group mean, standard deviation and
standard error of the mean. PTS is computed by subtracting the
preexposure threshold from the postexposure threshold for each
subject.

A-5 to A-6 Combined Threshold Shift

The threshold shifts at the three postexposure test frequencies (0.5,
2.0, 8.0 kHz) are tabulated in this table. Threshold shift is
computed by subtracting the preexposure threshold from the
postexposure threshold at each recovery time. An asterisk by a
threshold signifies that no response was present at the maximum
acoustic output of the AEP test system. The maximum level (in dB
SPL) was used as the subject's threshold if no response was present.
Therefore, it is possible that a measure of CTS may be underestimated
in some groups.



Total Cell Loss Summary

The total sensory cell losses for this group are presented in the top
portion of this table. The lower portion of the table presents the
mean and standard deviation for the total number of inner and outer
hair cells missing along octave band lengths of the cochlea.

A-8 to A-13 Total Cell Losses

The total sensory cell losses in octave band lengths of the cochlea
for each animal that comprises the exposure group are presented in
this table. Also included at the end of the table are the group
mean, standard deviation and standard error of the mean for each
octave band length.

A-14 to A-18 Percent Sensory Cell Losses

This table presents the percent sensory cell losses in octave band
lengths of the cochlea for each animal in this group. Also included
are the means, standard deviation and standard error of the mean for
each sensory cell and octave band length.

A-19 to A-33 Cochleograms and PTS Audiograms

These figures show: (1) the distribution of inner and outer hair
cell loss across the length of the basilar membrane (i.e.,
cochleograms) and the corresponding PTS audiogram; (2) the
distribution of outer hair cell loss by row and (3) the distribution
of pillar cell loss by row for each animal in the exposure group.
The cochleograms show the percent inner and outer hair cell losses
for each 0.24 mm segment of the basilar membrane. The PTS audiogram
is plotted to allow easy comparison of the PTS and cell loss
resulting from the noise exposure.

- ii -



Summary Data for the Group Exposed to:

Source III Reverberant Impulse

155 dB peak SPL - 1X

Animal #

1344 - Completed the Entire Protocol
1341 = Completed the Entire Protocol
1354 - Completed the Entire Protocol
1356 = Completed the Entire Protocol
1363 = Completed the Entire Protocol
1368 - Completed the Entire Protocol
1385 = Completed the Entire Protocol
1390 = Completed the Entire Protocol
1402 = Completed the Entire Protocol
1407 - Completed the Entire Protocol
1408 - Completed the Entire Protocol
1410 = Completed the Entire Protocol
1434 = Completed the Entire Protocol
1440 = Completed the Entire Protocol
1441 - Completed the Entire Protocol
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Source III Reverberant Impulse
155 dB peak SPL - 1X

Preexposure thresholds (dB SPL)

Animal\kHz 0.5 1.0 2.0 4.0 8.0 11.2 16.0
1334 25.8 9.2 4.2 5.8 9.2 17.5 34.2
1341 19.2 -2.5 -0.8 -5.8 -2.5 =-12.5 12.5
1354 15.8 5.8 5.8 -4.,2 7.5 12.5 15.8
1356 19.2 -0.8 7.5 -2.5 10.8 4.2 20.8
1363 15.8 0.8 -0.8 -4.2 14.2 7.5 15.8
1368 15.8 7.5 9.2 0.8 4.2 10.8 15.8
1385 22.5 5.8 5.8 -0.8 10.8 15.8 22.5
1390 20.8 20.8 14.2 5.8 5.8 22.5 22.5
1402 17.5 2.5 12.5 -7.5 2.5 kkkkx 25.8
1407 17.5 4,2 9.2 -0.8 12.5 14.2 22.5
1408 9.2 -5.8 -7.5 -14.2 10.8 9.2 22.5
1410 19.2 4.2 19.2 0.8 20.8 29.2 32.5
1434 19.2 0.8 17.5 -5.8 19.2 30.8 25.8
1440 14.2 -4.2 -0.8 -5.8 14.2 0.8 19.2
1441 25.8 9.2 14.2 -0.8 17.5 19.2 32.5

Mean 18.5 3.8 7.3 -2.6 10.5 13.0 22.7
S.D. 4.3 6.6 7.6 5.1 6.4 112543 6.6
S.E. 16 1.7 2.0 1.3 1.6 3.0 1.7

Postexposure thresholds (dB SPL)

Animal\kHz 0.5 1.0 2.0 4.0 8.0 11.2 16.0
1334 12.5 =-2.5 4.2 -17.5 19.2 12.5 34.2
1341 12.5 -4.2 9.2 ~-4,2 14.2 -5.8 17.5
1354 20.8 9.2 15.8 -4.2 20.8 17.5 10.8
1356 17.5 =-0.8 12.5 0.8 14.2 7.5 14.2
1363 14.2 2.5 12.5 0.8 9.2 -0.8 0.8
1368 15.8 5.8 10.8 -4.2 15.8 15.8 12.5
1385 10.8 -0.8 10.8 -0.8 15.8 9.2 17.5
1390 25.8 19.2 17.5 10.8 14.2 19.2 29.2
1402 14.2 -0.8 5.8 =-17.5 -0.8 7.5 27.5
1407 12.5 0.8 9.2 -0.8 20.8 12.5 24.2
1408 12.5 -10.8 -7.5 -12.5 7.5 25,5 19.2
1410 24.2 5.8 20.8 7.5 12.5 24.2 35.8
1434 20.8 0.8 17.5 2.5 20.8 30.8 25.8
1440 9.2 -0.8 4.2 5.8 10.8 9.2 15.8
1441 14.2 -5.8 10.8 -4.2 10.8 15.8 29.2

Mean 15.8 1.2 10.3 =225 13.7 11.8 20.9
S.D. 5.0 7.0 6.9 8.3 5.9 9.4 9.6
S.E. 1.3 1.8 1.8 2.1 1.5 2.4 2.5
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1X

Source III Reverberant Impulse
155 dB peak SPL -

Combined threshold shift (dB)
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Source III Reverberant Impulse
155 dB peak SPL -

Combined threshold shift (dB)
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Source III Reverberant Impulses
155 dB peak SPL - X

Total number of cochlear sensory cells missing

1st row 2nd row 3rd row Total

Animal Inner outer outer outer outer
number hair hair hair hair hair
cells cells cells cells cells

1334 1 3 104 35 142
1341 7 15 48 87 150
1354 10 322 114 172 608
1356 10 28 52 90 170
1363 1 12 46 84 142
1368 4 63 73 94 230
1385 1 12 19 78 109
1390 6 9 30 34 73
1402 2 15 36 35 86
1407 0 15 37 29 81
1408 0 20 57 67 144
1410 5 5 28 32 65
1434 0 4 24 71 99
1440 1 13 27 78 118
1441 0 17 43 50 110
Group mean 3 155
S.D. 4 132
S.E. 1 34

Total sensory cell losses over octave band lengths of the
cochlea centered at the frequencies indicated

Octave band Inner OQuter
center hair hair
frequency cells cells

Group means

0.125 kHz 0.1 10.9

0.25 kHz 0.1 25.4

0.5 kHz 0.9 31.9

1 kHz 0.4 31.3

2 kHz 0.4 19.0

4 kHz 0.5 14.1

8 kHz 0.5 12.9

16 kHz 0.1 9.5
Standard deviations

0.125 kHz 0.5 8.6

0.25 kHz 0.5 14.5

0.5 kHz 1.8 52.4

1 kHz 1.3 55.2

2 kHz 1.3 18.3

4 kHz 1.5 8.2

8 kHz 1.2 7.6

16 kHz 0.5 3.4



Total sensory cell losses over octave band frequencies
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Total sensory cell losses over octave band frequencies
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hair
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Total sensory cell losses over octave band frequencies

Inner
hair
cells
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Source III Reverberant Impulses
155 dB peak SPL - 1X

Total sensory cell losses over octave band frequencies

1st row 2nd row 3rd row Comb.

Inner outer outer outer outer Inner Outer
hair hair hair hair hair pillar pillar

cells cells cells cells cells cells cells
Chinchilla 1407

0.125 kHz 0 1l 2 2 S 0 0

0.25 kHz 0 0 2 1 3 0 0

0.5 kHz 0 0 14 7 21 0 0

1 kHz 0 3 ] 1 4 0 0

2 kHz 0 1 5 1 7 0 0

4 kHz 0 0 4 3 7 0 0

8 kHz 0 3 4 9 16 0 0

16 kHz 0 7 6 5 18 0 0

TOTALS 0 15 37 29 81 0 0
Chinchilla 1408

0.125 kHz 0 0 0 0 0 0 0

0.25 kHz 0 1 10 12 23 0 0

0.5 kHz 0 2 6 18 26 0 0

1 kHz 0 2 11 11 24 0 0

2 kHz 0 2 13 8 23 0 0

4 kHz 0 8 9 12 29 0 0

8 kHz 0 5 3 0 8 0 0

16 kHz 0 0 S 6 11 0 0

TOTALS 0 20 57 67 144 0 0
Chinchilla 14190

0.125 kHz 0 0 4 8 12 0 0

0.25 kHz 0 0 2 9 11 0 0

0.5 kHz 0 0 1 0 1 0 0

1 kHz 5 0 2 6 8 0 0

2 kHz 0 1 3 2 6 0 0

4 kHz 0 1 2 0 3 0 0

8 kHz 0 3 8 7 18 0 0

16 kHz 0 0 6 0 6 0 0

TOTALS 5 S 28 32 65 0 0

A-11




Total sensory cell losses over octave band frequencies
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Source III Reverberant Impulses
155 dB peak SPL - 1X

Total sensory cell losses over octave band frequencies

1st row 2nd row 3rd row Comb.

Inner outer outer outer outer Inner Quter
hair hair hair hair hair pillar pillar

cells cells cells cells cells cells cells

Group means

0.125 kHz 0.1 0.3 3.3 7.3 10.9 0.0 0.1
0.25 kHz 0.1 2.0 4.8 18.6 25.4 0.0 0.3
0.5 kHz 0.9 12.8 5.7 13.4 31.9 0.2 1.1

1 kHz 0.4 11.3 10.9 9.1 31.3 0.0 1.5

2 kHz 0.4 4.3 9.7 5.0 19.0 0.2 1.9

4 kHz 0.5 2.1 5.7 6.3 14.1 0.1 0.6

8 kHz 0.5 2.4 4.6 5.9 12.9 0.1 0.4

16 kHz 0.1 1.6 4.5 3.4 9.5 0.0 0.0
TOTALS 3.2 36.9 49.2 69.1 155.1 0.5 5.7

Group standard deviations

0.125 kHz 0.5 0.5 2.3 6.5 8.6 0.0 0.3

0.25 kHz 0.5 3.3 3.8 12.1 14.5 0.0 0.6

0.5 kHz 1.8 41.6 3.9 10.8 52.4 0.6 2.3

1 kHz 1.8 31.8 15.1 9.5 55.2 0.0 3.0

2 kHz 1.3 7.8 12.8 4.9 18.3 0.8 5.4

4 kHz 1.5 2.3 4.7 4.6 8.2 0.3 1.0

8 kHz 1.2 1445 257 5.5 7.6 0.3 0.6

16 kHz 0.5 2.1 2.4 2.2 3.4 0.0 0.0

TOTALS 3.6 80.2 28.1 37.1 132.4 1.0 11.1
Group standard errors

0.125 kHz 0.1 0.1 0.6 1.7 2.2 0.0 0.1

0.25 kHz 0.1 0.8 1.0 3.1 3.8 0.0 0.2

0.5 kHz 0.5 10.8 1.0 2.8 13.5 0.1 0.6

1 kHz 0.3 8.2 3.9 2.5 14.3 0.0 0.8

2 kHz 0.3 2.0 3.3 1.3 4.7 0.2 1.4

4 kHz 0.4 0.6 1.2 1.2 2.1 0.1 0.3

8 kHz 0.3 0.4 0.7 1.4 2.0 0.1 0.2

16 kHz 0.1 0.5 0.6 0.6 0.9 0.0 0.0

TOTALS 0.9 20.7 7.3 9.6 34.2 0.3 2.9
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Source III Reverberant Impulses
155 dB peak SPL -

Percent sensory cell losses over octave band frequencies
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Source III Reverberant Impulses
155 dB peak SPL -

Percent sensory cell losses over octave band frequencies
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Source III Reverberant Impulses
155 dB peak SPL -

Percent sensory cell losses over octave band frequencies
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Source III Reverberant Impulses
155 dB peak SPL - 1X

Percent sensory cell losses over octave band frequencies

1st —ow 2nd row 3rd row Comb.

Inner outer outer outer outer Inner Outer
hair hair hair hair hair pillar pillar
cells cells cells cells cells cells cells

Chinchilla 1434

0.125 kHz 0.0 0.0 2.8 7.2 3.3 0.0 0.0

0.25 kHz 0.0 0.3 0.3 10.7 3.8 0.0 0.0

0.5 kHz 0.0 0.0 0.6 3.8 1.5 0.0 0.0

1 kHz 0.0 0.7 0.0 1.0 0.6 0.0 0.0

2 kHz 0.0 0.0 0.6 0.0 0.2 0.0 0.0

4 kHz 0.0 0.0 1.3 1.6 1.0 0.0 0.0

8 kHz 0.0 0.0 1.6 0.0 0.5 0.0 0.0

16 kHz 0.0 0.4 1.8 1.4 1.2 0.0 0.0
Chinchilla 1440

0.125 kHz 0.0 0.5 4.1 10.2 4.9 0.0 0.0

0.25 kHz 0.0 0.6 0.0 8.0 2.9 0.0 0.0

0.5 kHz 0.0 0.0 0.3 2.3 0.9 0.0 0.0

1 kHz 0.0 0.6 0.6 1.8 1.0 0.0 0.3

2 kHz 0.4 1.2 0.9 0.9 1.0 0.6 0.9

4 kHz 0.0 0.0 0.6 1.8 0.8 0.0 0.0

8 kHz 0.0 0.9 0.0 1.5 0.8 0.0 0.0

16 kHz 0.0 0.3 3.7 0.7 1.6 0.0 0.0
Chinchilla 1441

0.125 kHz 0.0 0.0 2.9 1.9 1.6 0.0 0.0

0.25 kHz 0.0 0.6 0.8 1.7 1.0 0.0 6.0

0.5 kHz 0.0 0.8 1.7 3.9 2.2 0.2 0.3

1 kHz 0.0 0.0 0.0 1.2 0.4 0.0 0.0

2 kHz 0.0 0.3 2.3 2.6 1.7 0.0 0.0

4 kHz 0.0 1.4 3.1 2.3 253 0.2 0.0

8 kHz 0.0 0.0 1.4 1.4 0.9 0.0 0.0

16 kHz 0.0 1.9 1.3 0.0 1.1 0.0 0.0
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Group means
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Percent cell loss Percent cell loss

Percent cell loss
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012 0.2 0.5 1.0 20 5.0 10. 20.8
100 A= bbb 4 TR T 480 Hair Cells
Chinchilla 1363R Jantels
=== QOut
80- 60 @ pTs
o)
604 40 N o)
S’
40 -20 F‘Q
- . R o
-
20- 0. - * == -~ -O
$.
'0 ”” * \
0 U "0 ‘e % . e h .l _ ,“%2& .’, 20
0 20 40 60 80 100
012 0.2 0.5 1.0 2.0 5.0 10. 20.8
100 Py " [ n N " . PR | .
Outer Hair Cells
—— 1st Row
-=- 2nd Row
804 ==+ 3rd Row
604 L
404 -
012 0.2 0.5 1.0 20 5.0 10. 20.8
100 S — PR S SR S S U | Sl |
Pillar Cells
= Inner
80- [ = Quter
60 - -
404 s
204 -
o — n‘_ r r oy o' .
0 20 40 60 80 100

Percent total distance from apex

A-23



Percent cell loss Percent cell loss
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Percent cell loss Percent cell loss

Percent cell loss

Frequency (kHz)
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